
Stratum Architecture Details

Brian O’Connor, Uyen Chau and a team at Google
{brian,uyen}@opennetworking.org

Open Networking Korea 2018/04/24

Protocol Overview

gRPC (gRPC Remote Procedure Call)

● Use Protocol Buffers to define service API and messages
● Automatically generate native stubs in:

○ C / C++
○ C#
○ Dart
○ Go
○ Java
○ Node.js
○ PHP
○ Python
○ Ruby

● Transport over HTTP/2.0 and TLS
○ Efficient single TCP connection implementation that supports bidirectional

streaming

Slide from Vijay Pai

Slide from Vijay Pai

gRPC Service Example

More details here: https://grpc.io/docs/guides/

https://grpc.io/docs/guides/

P4Runtime

Enables a local or remote entity to arbitrate mastership, load the
pipeline/program, send/receive packets, and read and write forwarding
table entries, counters, and other chip features.

service P4Runtime {
 rpc Write(WriteRequest) returns (WriteResponse) {}
 rpc Read(ReadRequest) returns (stream ReadResponse) {}
 rpc SetForwardingPipelineConfig(SetForwardingPipelineConfigRequest)
 returns (SetForwardingPipelineConfigResponse) {}
 rpc GetForwardingPipelineConfig(GetForwardingPipelineConfigRequest)
 returns (GetForwardingPipelineConfigResponse) {}
 rpc StreamChannel(stream StreamMessageRequest)
 returns (stream StreamMessageResponse) {}
}

P4Runtime Service

Protobuf Definition:
https://github.com/p4lang/PI/blob/master/proto/p4/p4runtime.proto
https://github.com/p4lang/PI/blob/master/proto/p4/config/p4info.proto

Service Specification:
https://github.com/p4lang/PI/blob/master/proto/docs/p4runtime.md
https://github.com/p4lang/PI/blob/master/proto/docs/arbitration.md

Version 1.0 expected to be released in May 2018

https://github.com/p4lang/PI/blob/master/proto/p4/p4runtime.proto
https://github.com/p4lang/PI/blob/master/proto/p4/config/p4info.proto
https://github.com/p4lang/PI/blob/master/proto/docs/p4runtime.md
https://github.com/p4lang/PI/blob/master/proto/docs/arbitration.md

P4Runtime Write Request

message WriteRequest {
 uint64 device_id = 1;
 uint64 role_id = 2;
 Uint128 election_id = 3;
 repeated Update updates = 4;
}

message Update {
 enum Type {
 UNSPECIFIED = 0;
 INSERT = 1;
 MODIFY = 2;
 DELETE = 3;
 }
 Type type = 1;
 Entity entity = 2;
}

message Entity {
 oneof entity {
 ExternEntry extern_entry = 1;
 TableEntry table_entry = 2;
 ActionProfileMember

action_profile_member = 3;
 ActionProfileGroup

action_profile_group = 4;
 MeterEntry meter_entry = 5;
 DirectMeterEntry direct_meter_entry = 6;
 CounterEntry counter_entry = 7;
 DirectCounterEntry direct_counter_entry = 8;
 PacketReplicationEngineEntry

packet_replication_engine_entry = 9;
 ValueSetEntry value_set_entry = 10;
 RegisterEntry register_entry = 11;
 }
}

P4Runtime SetPipelineConfig

message SetForwardingPipelineConfigRequest {
 enum Action {
 UNSPECIFIED = 0;
 VERIFY = 1;
 VERIFY_AND_SAVE = 2;
 VERIFY_AND_COMMIT = 3;
 COMMIT = 4;
 RECONCILE_AND_COMMIT = 5;
 }
 uint64 device_id = 1;
 uint64 role_id = 2;
 Uint128 election_id = 3;
 Action action = 4;
 ForwardingPipelineConfig config = 5;
}

message ForwardingPipelineConfig {
 config.P4Info p4info = 1;
 // Target-specific P4 configuration.
 bytes p4_device_config = 2;
}

P4Runtime StreamChannel

message StreamMessageRequest {
 oneof update {
 MasterArbitrationUpdate

arbitration = 1;
 PacketOut packet = 2;
 }
}

message StreamMessageResponse {
 oneof update {
 MasterArbitrationUpdate

arbitration = 1;
 PacketIn packet = 2;
 }
}

// Packet sent from the controller to the switch.
message PacketOut {
 bytes payload = 1;
 // This will be based on P4 header annotated as
 // @controller_header("packet_out").
 // At most one P4 header can have this annotation.
 repeated PacketMetadata metadata = 2;
}

// Packet sent from the switch to the controller.
message PacketIn {
 bytes payload = 1;
 // This will be based on P4 header annotated as
 // @controller_header("packet_in").
 // At most one P4 header can have this annotation.
 repeated PacketMetadata metadata = 2;
}

P4Runtime Common Parameters

● device_id
○ Specifies the specific forwarding chip or software bridge
○ Set to 0 for single chip platforms

● role_id
○ Corresponds to a role with specific capabilities (i.e. what operations, P4 entities,

behaviors, etc. are in the scope of a given role)
○ Role definition is currently agreed upon between control and data planes offline
○ Default role_id (0) has full pipeline access

● election_id
○ P4Runtime supports mastership on a per-role basis
○ Client with the highest election ID is referred to as the "master", while all other

clients are referred to as "slaves"

Mastership Arbitration
● Upon connecting to the device, the client (e.g. controller) needs to

open a StreamChannel
● The client must advertise its role_id and election_id using a

MasterArbitrationUpdate message
○ If role_id is not set, it implies the default role and will be granted full pipeline

access
○ The election_id is opaque to the server (e.g. Stratum) and determined by the

control plane (can be omitted for single-instance control plane)
● The switch marks the client for each role with the highest

election_id as master
● Master can:

○ Perform Write requests
○ Receive PacketIn messages
○ Send PacketOut messages

P4Runtime workflow 14

test.p4

test.bin

Control plane

p4runtime.proto

P4Runtime server

Target driver

BMv2

Switch chip

p4c
(compiler)

P4 compiler generates 2 files:

1. Target-specific binaries
○ Used to configure switch pipeline

(e.g. binary config for ASIC, bitstream for FPGA, etc.)

2. P4Info file
○ Captures P4 program attributes needed to

runtime control
■ Tables, actions, parameters, etc.

○ Protobuf-based format
○ Target-independent compiler output

■ Same P4Info for SW switch, ASIC, etc.

test.p4info

Full P4Info protobuf specification:
https://github.com/p4lang/PI/blob/master/proto/p4/config/p4info.proto

Slide courtesy P4.org

https://github.com/p4lang/PI/blob/master/proto/p4/config/p4info.proto

P4Info example 15

...

action ipv4_forward(bit<48> dstAddr,
 bit<9> port) {
 /* Action implementation */
}

...

table ipv4_lpm {
 key = {
 hdr.ipv4.dstAddr: lpm;
 }
 actions = {
 ipv4_forward;
 ...
 }
 ...
}

basic_router.p4
actions {
 id: 16786453
 name: "ipv4_forward"
 params {
 id: 1
 name: "dstAddr"
 bitwidth: 48
 ...
 id: 2
 name: "port"
 bitwidth: 9
 }
}
...
tables {
 id: 33581985
 name: "ipv4_lpm"
 match_fields {
 id: 1
 name: "hdr.ipv4.dstAddr"
 bitwidth: 32
 match_type: LPM
 }
 action_ref_id: 16786453
}

basic_router.p4info

P4 compiler

Slide courtesy P4.org

P4Runtime example 16

table_entry {
 table_id: 33581985
 match {
 field_id: 1
 lpm {
 value: "\n\000\001\001"
 prefix_len: 32
 }
 }
 action {
 action_id: 16786453
 params {
 param_id: 1
 value: "\000\000\000\000\000\n"
 }
 params {
 param_id: 2
 value: "\000\007"
 }
 }
}

action ipv4_forward(bit<48> dstAddr,
 bit<9> port) {
 /* Action implementation */
}
table ipv4_lpm {
 key = {
 hdr.ipv4.dstAddr: lpm;
 }
 actions = {
 ipv4_forward;
 ...
 }
 ...
}

hdr.ipv4.dstAddr=10.0.1.1/32
-> ipv4_forward(00:00:00:00:00:10, 7)

basic_router.p4

Logical view of table entry

Protobuf message

Control plane
generates

Slide courtesy P4.org

gNMI

Provides an interface for retrieving device capabilities, reading/writing
configuration, and receiving streaming telemetry updates.

service gNMI {
 rpc Capabilities(CapabilityRequest) returns (CapabilityResponse);
 rpc Get(GetRequest) returns (GetResponse);
 rpc Set(SetRequest) returns (SetResponse);
 rpc Subscribe(stream SubscribeRequest) returns (stream SubscribeResponse);
}

Protobuf Definition:
https://github.com/openconfig/gnmi/blob/master/proto/gnmi/gnmi.proto

Service Specification:
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md

https://github.com/openconfig/gnmi/blob/master/proto/gnmi/gnmi.proto
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md

gNMI Get Config
message GetResponse {
 repeated Notification notification = 1; // Data values.
 // Extension messages associated with the GetResponse. See the
 // gNMI extension specification for further definition.
 repeated gnmi_ext.Extension extension = 3;
}

message Notification {
 int64 timestamp = 1; // Timestamp in nanoseconds since Epoch.
 Path prefix = 2; // Prefix used for paths in the message.
 // An alias for the path specified in the prefix field.
 // Reference: gNMI Specification Section 2.4.2
 string alias = 3;
 repeated Update update = 4; // Data elements that have changed values.
 repeated Path delete = 5; // Data elements that have been deleted.
}

message Update {
 Path path = 1; // The path (key) for the update.
 TypedValue val = 3; // The explicitly typed update value.
 uint32 duplicates = 4; // Number of coalesced duplicates.
}

gNMI Subscribe

● Client first submits a SubscriptionList containing the following:
○ Path in the config tree
○ Subscription type (target defined, on change, sample)
○ Subscription mode (once, stream, poll)

● Server immediately sends snapshot of current state for requested
subscriptions (unless suppressed)

● Server sends updates per the subscription type and mode

gNMI Updates

● Batches of configuration can be written or read using a list of Updates

● Updates consist of two parts:
○ Relative path to config node
○ Value associated with leaf node

● Only leaf values are transmitted over gNMI
○ Up to client (e.g. controller) and server (e.g. device) to maintain tree structure

defined by models

● Get and Subscribe use the same messages to receive updates

OpenConfig

OpenConfig defines a lot of models, but only a subset are relevant to the
data plane; these are the models that Stratum is interested in:

interfaces, lacp, platform, qos, vlan, system

https://github.com/openconfig/public/tree/master/release/models/interfaces
https://github.com/openconfig/public/tree/master/release/models/lacp
https://github.com/openconfig/public/tree/master/release/models/platform
https://github.com/openconfig/public/tree/master/release/models/qos
https://github.com/openconfig/public/tree/master/release/models/vlan
https://github.com/openconfig/public/tree/master/release/models/system

OpenConfig Interfaces Example

{
 "interfaces": {
 "interface": {
 "4/2/0": {
 "hold-time": {
 "config": {
 "up": 2000
 }
 },
 "config": {
 "description": "type=eth",
 "name": "4/2/0",
 "mtu": 1500
 },
 "name": "4/2/0"
 }
}}}

This is a JSON-encoded
instance of configuration
that adheres to the
Interfaces YANG model.

OpenConfig Interfaces Example

message Notification {

 timestamp = 100

 prefix = ["interfaces", "interface", "4/2/0"]

 repeated update = [

 {path = ["hold-time", "config", "up"], val = 2000},

 {path = ["config", "description"], val = "type=eth"},

 {path = ["config", "name"], val = "4/2/0"},

 {path = ["config", "mtu"], val = 1500},

 {path = ["name"], val = "4/2/0"}

]

}

Note: multiple notifications can be used to avoid path duplication

Representation of
gNMI notification

(actual message is
binary encoded by

protobuf)

gNOI

Collection of micro-services for runtime management, for example:
● Device reboots, pushing/rotating SSL keys/certs, BERT [bit error rate

testing on a link/port], ping testing
● Ephemeral state management (clearing L2 neighbor

discovery/spanning tree, resetting a BGP neighbor session)

Initial support for cert, file, interface, layer2, system

https://github.com/openconfig/gnoi/blob/master/cert/cert.proto
https://github.com/openconfig/gnoi/blob/master/file/file.proto
https://github.com/openconfig/gnoi/blob/master/interface/interface.proto
https://github.com/openconfig/gnoi/blob/master/layer2/layer2.proto
https://github.com/openconfig/gnoi/blob/master/system/system.proto

gNOI System Service

service System {
 rpc Ping(PingRequest) returns (stream PingResponse) {}
 rpc Traceroute(TracerouteRequest) returns (stream TracerouteResponse) {}
 rpc Time(TimeRequest) returns (TimeResponse) {}
 rpc SetPackage(stream SetPackageRequest) returns (SetPackageResponse) {}
 rpc SwitchControlProcessor(SwitchControlProcessorRequest)

returns (SwitchControlProcessorResponse) {}
 rpc Reboot(RebootRequest) returns (RebootResponse) {}
 rpc RebootStatus(RebootStatusRequest) returns (RebootStatusResponse) {}
 rpc CancelReboot(CancelRebootRequest) returns (CancelRebootResponse) {}
}

Architecture Details

kernel

hardware

user

Shared (HW agnostic)
Chip specific
Platform specific
Chip and Platform specific

St
ra

tu
m

 s
w

itc
h

ag
en

t

Switch Agent Architectural Components

P4 Runtime gNMI gNOI

Switch Broker Interface

Table
Manager

Node/Chip
Manager

Chassis
Manager

Chip Abstraction Managers
E.g. ACL, L2, L3, Packet I/O,

Tunnel

Platform
Manager

Remote or Local Controller(s)

Switch SDK Platform API

Switch Chip Drivers Platform Drivers

Switch Chip(s) Peripheral(s)

OnlPhal
VendorxSwitchInterface

Vendorx SDK

Stratum switch agent

Kernel (ONL)

P4Runtime APIs

Misc HW Switch chip

ConfigMonitoringService AdminService

L3ManagerAclManagerChassisManager

VendorxSdkWrapper

P4Service

SerdesDbManager

TableManager

P4Table
Mapper

gNOI APIsgNMI APIs

VendorxNodeVendorxNodeVendorxNode

Switch Agent Classes

gRPC services -- the heart of the switch agent

● P4Service -- an implementation of P4Runtime
○ Reading/writing P4 forwarding entries (table entries, action profile

member/groups)
○ Packet I/O over streaming RPCs
○ Pushing/reading the P4-based forwarding pipeline config
○ Support for master arbitration and session management

● ConfigMonitoringService -- an implementation of gNMI
○ Get/set the chassis configuration
○ Streaming interface for telemetry (polling, on change, etc)
○ Get/set port speed, QoS config, LEDs, etc

● AdminService -- an implementation of gNOI
○ Security, key rotation
○ Debug, BERT, image push over RPC, ping/traceroute over RPC, etc

P4 Service Implementation

● Clients (i.e. controllers) are identified by the stream channel

● Upon connection, wait for mastership arbitration message

● Clients stored in a sorted set by election_id, so the first element is the
master
○ One set per role

● For write requests and packet I/O, compare against head of the set

● When the mastership changes, send notification to all stream listeners

gNMI Service Implementation

● Create an in-memory tree based on Yang models at start up
○ Models cannot be changed after start up

● State at this layer is ephemeral, and may be persisted by the vendor
specific classes, APIs or SDKs

● For each leaf in the model tree, a function pointer is provided that
know to update each value
○ If the model changes between restarts, the new function will

dynamically populate the model tree with the correct value

● At any point in time, the service can provide the value from the
cached value from the store

Switch Broker Interface

● This is NOT an
abstraction like SAI

● Transparent broker
interface between P4
Runtime / gNMI / gNOI
to vendor-specific
managers

P4 Runtime

Switch Broker Interface

Node
instance

for Chip 1

gNMI gNOI

Node
instance

for Chip 2

Chassis
Manager

Flow Write
to Chip 1

Push
pipleline to

Chip 2

Set port
speed on

Chip 1
Restart
chassis

Chassis Switch with two forwarding chips

More on Switch Agent

● gRPC northbound APIs provided by multiple gRPC services
○ One gRPC service for each set of RPCs that are functionally similar

(config push, monitoring, flow/group programming, admin, security, etc)

● gRPC services running as part of one or multiple gRPC servers
○ Each gRPC server has its own threadpool (currently we have one server

and 3 main services)

● gRPC service class will be given a pointer of type SwitchInterface in
their constructors
○ SwitchInterface is our proposed OO way of "abstracting" switch

○ A base abstract class which defines the methods needed by HAL to
program "any" switching chip

● Multiple implementation possible without changing the northbound
gRPC API

○ VendorxSwitch: An implementation of SwitchInterface for
vendorx-based switches which directly uses vendorx SDK

○ SaiSwitch: An implementation of SwitchInterface which uses SAI
for low-level chip programming (considering the limitations)

○ P4SoftSwitch: An implementation of SwitchInterface which uses
the P4-oriented program-independent (PI) API to program a P4
soft switch

● All implementations will be thread-safe

More on Switch Agent (cont.)

● Implementations of SwitchInterface will be given pointers to
"manager" or "driver" classes in their constructor, for example
○ VendorxL2Manager: In charge of the entire L2 routing in a vendorx-based switch

○ VendorxL3Manager: In charge of the entire L3 routing in a vendorx-based switch

○ VendorxAclManager: Manages all types of ACLs in a vendorx-based switch

● An implementation of SwitchInterface and/or the manager classes
may be also given a pointer of type Phal in their constructor.
○ Phal: Abstract class which defines an interface for Platform Hardware Abstraction

Layer (PHAL)

○ POR is to use OCP Open Network Linux (ONL) as the Linux distro and leverage
Open Network Linux Platform (ONLP) APIs to implement Phal

More on Switch Agent (cont.)

https://opennetlinux.org/
https://opennetlinux.org/docs/porting

Optional SDK Shim Layer

● Goal:
○ Be able to test the new stack in different levels: real hardware, fake switch on

cloud, your Desktop!
○ Have a way to log all the SDK calls in one place independent of the manager

● Solution: Push the code that directly talks to the hardware to low-level
classes that can be easily faked out
○ Push SDK calls to a class which provides a shim layer around SDK
○ Have all the manager classes use a pointer to this class to talk to SDK instead of

calling the SDK directly

SDK Shim Layer Example

● Example: For vendorx-based switches which use an SDK:
○ VendorxSdkInterface: Abstract class which exposes all the SDK calls used by all

managers
○ VendorxSdkWrapper: An implementation of VendorxSdkInterface for real

hardware
○ VendorxSdkFake: A fake implementation of VendorxSdkInterface for testing

purposes
○ VendorxSdkSim: An implementation of VendorxSdkInterface on a chip simulator

(if any)

Example Class Relationships

VendorxSwitch

VendorxNode

VendorxAclManager

VendorxSdkWrapper

VendorxL3ManagerVendorxChassisManager

vendorxNode*
vendorx_node_

VendorxL3Manager*
l3_manager_

VendorxAclManager*
acl_manager_

VendorxChassisManager*
chassis_manager_

VendorxSdkInterface*
sdk_interface_

VendorxSdkInterface*
sdk_interface_

VendorxSdkInterface*
sdk_interface_

Vendorx SDK

P4Service

SwitchInterface*
switch_interface_

Security -- Authentication & Authorization
● Authentication -- credential management

○ Rely on gRPC support for different ways of doing credential management

i. gRPC allows loading different credential managers using
builder.AddListeningPort w/o changing anything else -- so simple!

○ Vendors/companies can "potentially" have different credential manager classes?

○ Q: can we have a standard that Stratum uses by default?

● Authorization -- per-service per-RPC authorization policy checking
○ A class called AuthPolicyChecker which handles reading auth policies (in form of a

protobuf) from persistent storage and applies per-service per-RPC auth at the
beginning of each single RPC

○ Auth policy is updated via gNOI (details are still WIP)

Call Flows:
Observing interactions

between interfaces

[Brian]

Push New P4 Program

VendorxSwitchInterface

Vendorx SDK

P4Runtime APIs

Switch Chip

AclManager

VendorxSdkWrapper

P4Service

TableManager

P4Table
Mapper

1. Controller pushes compiled P4 program using P4
Runtime SetForwardingPipelineConfig

VendorxNode

2. P4 Service calls Switch Interface, which identifies the
target node and calls the appropriate Node Manager

3. Node manager passes the pipeline config to Table
Manager, which leverages the P4 Table Mapper to
create mappings between P4 and vendor SDK
representations

4. Node manager then pushes the pipeline config to all
dynamic table managers to allocate resources using
the chip SDK (e.g. to ACL Manager to carve out the
ACL banks)

Flow Table Write

VendorxSwitchInterface

Vendorx SDK

P4Runtime APIs

Switch Chip

L3Manager

VendorxSdkWrapper

P4Service

TableManager

P4Table
Mapper

VendorxNode

1. Controller pushes flow rule using P4 Runtime Write

2. P4 Service calls Switch Interface, which identifies the
target node and calls the appropriate Node Manager

3. Node manager uses the Table Manager to translate
the rule into the vendor SDK representation and
identifies the appropriate forwarding manager

4. Node manager then pushes the write request to the
table managers to write using the chip SDK (e.g. an IP
forwarding rule to the L3 Manager)

Packet In

VendorxSwitchInterface

Vendorx SDK

P4Runtime APIs

Switch Chip

PacketIoMgr

VendorxSdkWrapper

P4Service

TableManager

P4Table
Mapper

VendorxNode

1. Controller opens a streaming channel by calling P4
Runtime Stream

2. After mastership arbitration, the controller is added to
the P4Service and the packet in callback is bound to
the stream

3. The callback is passed to Switch Interface, then to
Node Interface, then to PacketIo Manager

4. PacketIo Manager registers the callback with its
vendor SDK-based receive handler

5. When a packet arrives, it is read by the receive
handler and Packet Manager uses the Table Manager
to build the packet metadata

6. Annotated packet is used to invoke the P4 Runtime
callback, which sends the packet over the stream.

Set Config

OnlPhal

VendorxSwitchInterface

Vendorx SDK

Misc HW Switch Chip

ConfigMonitoringService

L3ManagerAclManager

ChassisManager

VendorxSdkWrapper

TableManager

P4Table
Mapper

gNMI APIs

VendorxNode

1. Controller pushes new config using gNMI Set

2. Config and Monitoring Service calls Switch Interface,
which validates the configuration and forwards it to
chassis and node managers

3. Node manager forwards the configuration to the
appropriate forwarding managers and Table Manager

4. Chassis or forwarding managers make the appropriate
calls to platform or chip SDKs to realize the change

5. Change is committed to config tree and persisted

ConfigTree

Stream Updates (e.g. config state, telemetry)

OnlPhal

VendorxSwitchInterface

Vendorx SDK

Misc HW Switch Chip

ConfigMonitoringService

ChassisManager

VendorxSdkWrapper

gNMI APIs

VendorxNodeManager

1. Controller opens a streaming channel using gNMI
Subscribe

2. Config and Monitoring services calls gNMI Publisher to
handle tracking updates for this subscription

3. GnmiPublisher walks the config tree based on the
subscription request, streaming each value and
registering an event handler at each leaf

4. State changes trigger callbacks registered by Stratum
components, which write state to config tree

5. Config tree change is sent to gNMI Publisher, which
sends the update over the stream

GnmiPublisher ConfigTree

Framework for Evaluating Performance

Estimate: gRPC Latency

● gRPC introduces around 120 microseconds of latency (including client code)
○ Total latency also includes network delay; negligible for localhost connections

● Stratum method calls and lookups add a few microseconds
○ ~10 method calls and in-memory map lookups

https://grpc.io/docs/guides/benchmarking.html

https://grpc.io/docs/guides/benchmarking.html

● gRPC supports around 140,000 queries per second (on 8 cores)
● Stratum may slightly reduce this metric

○ Processing is more complex

Estimate: gRPC Throughput

https://grpc.io/docs/guides/benchmarking.html

https://grpc.io/docs/guides/benchmarking.html

Estimating Stratum Performance

● Data plane traffic is not impacted by Stratum
● Control and configuration overhead added by Stratum is negligible

○ Expect Stratum to introduce less than 1ms latency
○ Expect Stratum to support at least 100,000 operations/sec

● However, this is just a basic estimate; we need to validate these
numbers on real systems

● Expect bottleneck to be platform APIs and chip SDKs, so real world
performance will likely be limited by hardware APIs

Take away: Stratum is not likely to impact performance compared to
existing data plane implementations

Exception: Packet I/O

● Should easily support a few thousand packets per second through
P4Runtime

● May not be sufficient for high performance VNFs over P4Runtime

● For high-performance or line-rate VNFs, it would be best to use a data
plane port
○ Future work may investigate on high-performance pass through for

on-platform VNFs

Member Expectations

● Switch Chip Vendors
○ Implement Node and forwarding managers
○ Implement Table Manager that maps P4 Runtime to forward chip SDKs

● ODMs
○ Ensure peripherals and platform hardware adhere to Stratum’s platform API

(ONLP)
○ Alternatively, implement Platform Manager that maps to desired platform interface
○ Work with Chip vendors on Chassis Manager for each box

● Service Providers and Network Operators
○ Develop use cases and deployment models that bring Stratum into the network

● Software Vendors, Control Plane platforms
○ Build support for Stratum’s interfaces -- P4 Runtime, gNMI, and gNOI

● Everyone
○ Development environment, testing, documentation, etc.
○ Feature enhancements, platform hardening

Members’ Expected Contributions

Stratum Development Timeline
Q1 2018 Q2 2018 Q3 2018 Q4 2018 2019

Stratum Community Launch
with 22 partners

Seed code from Google
available to pioneering members

(estimate)

Pioneer work days
- Reference Platform Support (HW & SW)
- Development Infrastructure (Build, CI, etc.)

Open Source Launch
with forwarding chip and

platform support for every
vendor member

Codebase GA for Stratum Members
- Expanded platform support
- Feature development
- Hackathons

Field Trials, Production Deployments
on cloud and telco networks

Community
Development

Stratum Summary

● Common interfaces for control, configuration, monitoring and telemetry

● Minimal design for high performance local or remote control and management

● Incremental migration paths enables incremental value-add
(e.g. SDN, programmable hardware)

● Broad switching chip and platform support underway

● Production-root implementation designed to scale

https://stratumproject.org/

To become project member, or to join the announcement mailing list:
https://wiki.opennetworking.org/display/COM/Stratum+Wiki+Home+Page

https://stratumproject.org/
https://wiki.opennetworking.org/display/COM/Stratum+Wiki+Home+Page

